
Page 1

Trilinos Checkin Testing of Primary

Stable Code

Roscoe A. Bartlett

http://www.cs.sandia.gov/~rabartl/

Department of Optimization & Uncertainty Estimation

Trilinos Software Engineering Technologies and Integration Lead

Sandia National Laboratories

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.

2009-7704P

Page 2

Trilinos “Stable” vs “Experimental” Code: Defined

• “Stable” Code and Tests:

– “Meets one or more of the following criteria:

• Represents an important capability being used by an existing, or

• Represents a new capability that the authors are willing to stand behind

• Does not mean it is being targeted for the next release

– Expected to be kept working at all times on the primary development platform

– Developed and maintained to be highly portable

– Maintained at the high quality as defined by modern SE principles

• “Experimental” Code and Tests:

– By definition, all remaining code that is not “Stable” code.

– Represents fundamental research and may be developed with informal low-

quality software practices.

– Any code that has a direct and mandatory dependency on any “Experimental”

code must also be considered to be “Experimental” code.

– Developers should try to avoid depending on other “Experimental” code because

it is likely to be unstable and break frequently.

– “Experimental” code should be protected behind ifdefs with macros that must be

defined in order to be built.

Page 3

Trilinos “Primary Stable” vs “Secondary Stable” Code

• Sub-categorizations of “stable” code:

– “Primary Stable” code is “Stable” code that only depends on:

• C, and C++ compilers

• Fortran 77 compiler (optional)

• BLAS and LAPACK

• MPI

– “Secondary Stable” code

• Has additional dependencies such as:

– SWIG/Python (i.e. PyTrilinos)

– Fortran 2003+ (i.e. ForTrilinos)

– External direct sparse solvers like UMFPACK, SuperLU, etc. (i.e. Amesos

adapters)

• Or, could be considered “Primary Stable” Code but is excluded from pre-checkin testing

– Didasko

– NewPackage

– ...

• “Stable” code in one package can only depend on “Stable” code in other

packages.

• “Stable” code should by default only build “Primary Stable” code.

• Enabling “Secondary Stable” code should require extra configure-time

options.

Page 4

Stable (Primary and Secondary) and Experimental Code

• Primary Stable Code and Tests:

– All affected code should be built and tested *before* a checkin

– CATEGORY in cmake/Trilinos[Packages,TPLs].cmake set to “PS”

– Required TPL dependencies on BLAS, LAPACK, and MPI (or less)

– Configured with:

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON

• Secondary Stable Code and Tests:

– Represents an important (released) capability but has extra TPL dependencies

– *Note* be enabled for pre-checkin testing

– Tested by central framework resources (nightly integration testing)

– CATEGORY in cmake/Trilinos[Packages,TPLs].cmake set to “SS”

– Requires explicitly enabling “Stable” optional TPL dependencies

– Configured with:

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=ON \

-D Trilinos_ENABLE_SECONDARY_STABLE_CODE=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON

• Tertiary Stable Code and Tests? (Right now just TPLs)

• Experimental Code:

– CATEGORY in cmake/Trilinos[Packages,TPLs].cmake set to “EX”

– Requires explicit enabling

– Tested by individual package teams (but posts results to main CDash dashboard)

Page 5

Improving Stability of “Stable” code: Motivation

• Support deep stacks of vertically integrated Trilinos packages with

production APPs

• Support tighter coupling and co-development with production APPs

– SIERRA toolkit packages (STK_Mesh, STK_IO, ...)

– Replace SIERRA framework code with Trilinos code (Teuchos::ParameterList, ...)

– Many many others …

• Support more frequent, safer, higher quality, lower risk releases of Trilinos

• Improve overall development productivity and software quality

See:

Trilinos/doc/DevGuide/TrilinosSoftwareEngineeringImprovements/*.tex

Page 6

“Stable” Code: 100% Passing Test Policy

• All “Stable” code should have 100% passing tests 100% of the time on the primary

development platforms as the norm instead of the exception.

• Achieving 100% passing tests on auxiliary development platforms is also a priority but is

done in a secondary development loop.

• A failing test on any testing platform should be addressed and be made to pass or be

disabled using the following algorithm:

– Fix the test in the strongest way possible

– Or, loosen the “strength” of test to get it pass on that specific platform (i.e. by loosing a platform-

specific tolerance)

– Or, disable the test and submit a new item to the sprint or product backlog (e.g. Bugzilla bug

report) so that it can be prioritized and fixed later

– Or, remove the test and all of the associated code related to it

Page 7

Motivations for a 100% Passing Test Policy for “Stable” Code

Why is 100% passing tests important?

• Package Y (reference package):

– “Broken Window” Phenomenon

=> One broken test begets others

– Zero (0) is singularly different that 1 or X failing tests

=> People take notice of “all passed” vs “failed”

– „M‟ failing tests is not much different that „N‟ failing tests

– 100% passing tests is a clear measure of the code health

– 100% passing test suite is unbiased criteria for code checkins

– 100% passing test suite is an unbiased measure for if any code has

been broken after a checkin

– Code coverage less meaningful when there are failing tests

• Package X (up-stream package being used by Package Y)

– 100% passing test suite for Package Z provides a clear means to

determine if changes in Package X break anything.

• Package Z (down-stream package that uses Package Y)

– 100% passing test suite for Package Y gives Package Z developers

confidence that they can depend on and trust the code in Package Y.

• Bottom Line:

– 100% passing test suites help to build trust between developers

– 100% passing test suites help to avoid unnecessary communication

– 100% passing test suites help to avoid synchronization points

Package Z

(down-stream)

Package Y

(reference)

Package X

(up-stream)

Page 8

Waste Created By Lack of Sufficient Pre-Checkin Testing

Upstream

Package Y

Developers

Downstream

Package Z

Developers

1) Checkin that breaks

Package Z

6) Fixes problem and

checks in
2) Checks out, builds,

tests, and detects

problems with

Package Z

Trilinos VC Repos

CI Server

3) Sends failure email to

Package Z developers

4.a) Checks out, builds, &

tests

4.b) Wastes time trying to figure out why

Package Z is failing (looks at VC logs, looks

at dashboard results, etc.)

5) Sends email to Package Y

developers to please fix the

problem

• 90% of these problems can be avoided with sufficient pre-checkin testing!

• Catching the problem before checking in saves everyone wasted time!

Page 9

Automatic Dependency Handling for Pre-Checkin Testing

$ cmake \

-D Trilinos_ENABLE_ALL_PACKAGES:BOOL=OFF \

-D Trilinos_ENABLE_Epetra:BOOL=ON \

-D Trilinos_ENABLE_ALL_FORWARD_DEP_PACAKGES:BOOL=ON \

-D Trilinos_ENABLE_TESTS:BOOL=ON \

..

RTOp

Teuchos Epetra

Triutils

Thyra

EpetraExt

Lib Only

Libs & Tests

Pre-Checkin Testing: The checkin-test.py script

Python script that performs safe pre-checkin testing:

$ cd $TRILINOS_HOME

$ mkdir CHECKIN; echo CHECKIN >> .git/info/exclude; cd CHECKIN

$../checkin-test.py –do-all

• Automatically figures out what Trilinos packages have been changed

• Automatically enables all downstream packages

• Configures, builds and runs tests

• Built-in Configurations:

• MPI_DEBUG (Optimized compiler options, checked STL, etc.) (Do

at least this build!)

• SERIAL_RELEASE (varies other configure options)

• Only enables Primary Stable Code!

• Strong warning options (warnings as errors is a problem)

• Sends emails after each build case is finished

• Sends final email if it is okay to commit or not

• Can automatically do the commit at the end (Recommended)

• Fully customizable (enabled packages, build cases, etc.)

• Documentation: checkin-test.py --help

checkin-test.py: Example Driver Script

Script I used on my machine (checkin-test-<mymachine>.sh):

#!/bin/bash

EXTRA_ARGS=$@

echo "-DBUILD_SHARED_LIBS:BOOL=ON" > COMMON.config

/home/rabartl/PROJECTS/Trilinos.base/Trilinos/checkin-test.py \

--make-options="-j4" \

--ctest-options="-j4" \

--ctest-time-out=180 \

--commit-msg-header-file=checkin_message \

$EXTRA_ARGS

Run as (after symbolically linking into CHECKIN directory):

$./checkin-test-<mymachine>.sh –do-all –commit

Example driver scripts (I symbolically link these):

sampleScripts/checkin-test-cygwin-rabartl.sh

sampleScripts/checkin-test-<mymachine>.sh

sampleScripts/checkin-test-scicolan-rabartl.sh

…

checkin-test.py: Recommended Workflow

A) Fill out the checkin checklist message in a temporary text file

„checkin_message‟

B) Do local git commits (optional)

C) Run the checkin-test.py script:

$./checkin-test-mymachine.sh –do-all [–commit …]

D) Go do something useful (e.g. go home, check email, review a paper, work on a

paper, talk with someone, ..)

D) Check your email later to see what happens

Consequences:

• Documents a bullet-proof process for configuring, building, and testing Trilinos

• Does the VC commands to do a safe global checkin (ease git transition)

• Enjoy fewer bad checkins

• Spend less time driving the checkin process

checkin-test.py: Log files

Directory Structure for auto-generated log files

CHECKIN/

checkin-test.out

commitFinal.out

commitInitial.out

pullInitial.out

push.out

…

MPI_DEBUG/

configure.out

make.out

ctest.out

…

SERIAL_RELEASE/

…

See log files while configure, build, or test is being run do, for example:

$ tail –f MPI_DEBUG/make.out

checkin-test.py: Cost of Pre-Checkin Testing (Average Case)

<fast-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 24.2 3.9 438

SERIAL_RELEASE 18.1 1.1 426

A) Enabling just ML and tests/examples in downstream packages

Enabled packages (libraries) (29/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, Triutils, Tpetra,

EpetraExt, Thyra, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, ML, Belos, Stratimikos, Meros, FEI,

Anasazi, , Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO, Sundance

Enabled packages (tests/examples) (10/52): ML, Belos, Stratimikos, Meros, FEI, NOX, Moertel, Rythmos,

MOOCHO, Sundance

<fast-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 0.7 4.0 438

SERIAL_RELEASE 0.4 1.2 426

<average-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 59.0 6.5 434

SERIAL_RELEASE* 30.4 1.3 350

<average-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 1.4 6.6 434

SERIAL_RELEASE* 0.7 1.3 350

• With shared libraries, rebuilds can be very fast!

• Use a fast machine to checkin from!

* Sundance disabled on <average-machine> for serial build (see bug ???)

checkin-test.py: Cost of Pre-Checkin Testing (Worst Case)

<fast-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 48.0 8.34 1140

SERIAL_RELEASE 37.3 1.9 1147

B) Enabling Teuchos and tests/examples in downstream packages

Enabled packages (libraries) (34/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, GlobiPack, Triutils,

Tpetra, EpetraExt, Thyra, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, Komplex, ML,

Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO,

Sundance, CTrilinos

Enabled packages (tests/examples) (22/52): Teuchos, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Ifpack,

Komplex, ML, Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos,

MOOCHO, Sundance

<fast-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 1.1 8.1 1140

SERIAL_RELEASE 1.2 2.1 1147

<average-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 103.0 12.0 1136

SERIAL_RELEASE* 63.5 2.5 1071

<average-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 2.3 12.0 1136

SERIAL_RELEASE* 1.49 2.5 1071

* Sundance disabled on <average-machine> (see bug ???)

• Rebuilds with shared libs can be *much* faster that with static libs!

* Sundance disabled on <average-machine> for serial build (see bug ???)

checkin-test.py: Shared Libraries vs. Static Libraries

B) Enabling Teuchos and tests/examples in downstream packages

Enabled packages (libraries) (34/52): Teuchos, RTOp, Kokkos, Epetra, Zoltan, Shards, GlobiPack, Triutils,

Tpetra, EpetraExt, Thyra, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Pamgen, Ifpack, Komplex, ML,

Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos, MOOCHO,

Sundance, CTrilinos

Enabled packages (tests/examples) (22/52): Teuchos, OptiPack, Isorropia, AztecOO, Galeri, Amesos, Ifpack,

Komplex, ML, Belos, Stratimikos, Meros, FEI, Anasazi, RBGen, Sacado, Intrepid, NOX, Moertel, Rythmos,

MOOCHO, Sundance

<average-machine>, static libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 115.3 10.7 1136

SERIAL_RELEASE* 72.4 2.7 1071

<average-machine>, static libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 18.9 10.4 1136

SERIAL_RELEASE* 6.6 2.4 1071

<average-machine>, shared libs, from scratch

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 103.0 12.0 1136

SERIAL_RELEASE* 63.5 2.5 1071

<average-machine>, shared libs, rebuilid

Build Type Build

(min)

Test

(min)

#tests

MPI_DEBUG 2.3 12.0 1136

SERIAL_RELEASE* 1.49 2.5 1071

Speeding up Pre-Checkin Testing: Current Approaches

• 100% safe approaches:

• Checkin from a fast workstation no mater where you develop (easy with git)

• Keep private development and checkin builds separate

• Enabled shared libraries (-DBUILD_SHARED_LIBS:BOOL=ON)

• Keep the CHECKIN builds up to date (could use crontab or just manually)

• Less than 100% safe approaches (from better to worst):

• Do only MPI_DEBUG build (--without-serial-release)

• Disallow enabling all packages (--enable-all-packages=off)

• Example: Disables enabling all packages when cmake/TrilinosPackages.cmake

changes

• Disable forward packages (--no-enable-fwd-packages)

• Example: Only tests in the package have changed

• Example: Good unit tests and minimal changes

• Disabling specific downstream packages (--disable-packages=P1,…)

• Example: Disabling Sundance when testing Tpetra

• Enabling only specific packages (--enable-packages=P1,…)

• Example: Only test a few packages

--enable-all-packages=off --enable-packages=Tpetra,Belos,Anasazi

Improving Pre-Checkin Testing: Future Approaches

• Speeding up pre-checkin testing:

• Move to explicit template instantiation

• Forward declarations

• Use pImpl idiom (faster rebuilds)

• Remove standard C++ headers out of Package_ConfigDefs.hpp

• Trim down number of “Basic Integration” test executables

• More unit tests, faster more minimal basic integration tests

• Move to a sub-package architecture in the CMake build system

• Improving consistency of pre-checkin testing:

• Standardize versions of GCC, MPI, BLAS, LAPACK etc. …

=> Official Trilinos Developers Toolset

• Improving the portability testing of pre-checkin testing:

• Strong warnings and warnings as errors

• Requires standard versions of GCC and MPI!

=> Official Trilinos Developers Toolset

Extra Build/Test Cases

• Motivation:

• Your development work involves working with Secondary Stale or

Experimental code and you want to combine this with other standard

builds in the same process.

• Allow for extra user-defined build cases:

-- extra-builds=BUILD1,BUILD2,…,BUILDN

• Example: Test Secondary Stable Code and TPLs

$ echo “-DTPL_ENABLE_SCOTCH:BOOL=ON” >> WITH_SCOTCH.config

$./checkin-test-mymachine.sh --extra-builds=WITH_SCOTCH –do-all

Pre-Checkin Testing: Summary

• Using this script will improve the stability of Trilinos for everyone involved!

• Bad reasons to do a sloppy checkin:

• “I want to integrate my code frequently”

=> Good motivation but not as important good testing

=> Checking in once a day is usually sufficient

• “I need to get this revision to a collaborator ASAP”

=> Just have them pull directly from your local git repository

• “In am doing porting work and can‟t afford a complete test on the machine”

=> Pull local commits back to your git local working directory your

workstation and commit from there (remote test/push)

• “I am in a good point to checkpoint my changes”

=> Do a local git commit

• “I want to backup my work with history”

=> Use git to publish to a “backup” repository on a different machine

• “I want to checkin to feel a sense of completion”

=> Mental problem, seek help

• Please read „‟checkin-test.py –help” and give this a try!

• Please ask questions, give feedback!

